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IGNITION ANALYSIS OF A POROUS ENERGETIC MATERIAL —

II. IGNITION AT A CLOSED HEATED END

1. Introduction

As is well known, the ignition of combustible mixtures and materials from a nonreacted state

is a fundamental topic in combustion theory. For many problems, such as the one considered here,

it is characterized by a gradual increase in temperature through external heating, followed by a

thermal explosion (i. e., a rapid temperature increase over a very short time) as exothermic reactions

begin to occur. The time it takes for the latter to occur once such external heating has commenced

is usually regarded as the time to ignition, or ignition-delay time, and is clearly a function of the

precise problem being considered (cf. Williams, 1985; Zel’dovich et al., 1985). In the present study,

we consider the case of one type of spatially nonhomogeneous,” two-phase problem in which heating

occurs at the surface of a porous energetic material. In Part I (Telengator, Margolis and Williams,

1998, hereafter referred to as TMW), this surface was open in the sense that gas flow, generated

by thermal expansion, was directed out of the solid. In the present study, we consider the case of

a closed surface such that the thermally-induced gas flow is, by necessity, directed into the porous

solid.

The ignition problems analyzed here and in Part I are generalizations of the one considered

by Liñán and Williams (1971) (hereafter referred to as LW), which dealt with the ignition of a

nonporous, semi-infinite, reactive solid by a constant heat flux at the surface, to address the ignition

of a porous energetic material. In the latter problem, two-phase-flow effects begin to play a role in

that gas flow, induced by thermal expansion, provides a means of convective transport of energy

relative to the solid, as does any difference in physical properties of the two media with respect

to diffusive transport. Since the ignition-delay time is inherently tied to the Arrhenius nature of

the reaction-rate expressions, it is necessary to retain this feature of the problem in the analysis.

Thus, in order to obtain approximate analytical estimates of the ignition-delay time and other

aspects of the ignition process, we follow LW in applying activation-energy asymptotic to the

two-phase problems considered in the present studies. Similar types of analyses have been applied

to gaseous premixtures (cf. Kapila, 1981; Kassoy and Poland, 1980 & 1981), where it has proven

possible to continue the analysis past the point of ignition to describe the complete development

of a propagating combustion wave. Problems dealing with the ignition of porous propellants and

other energetic materials arise naturally from safety concerns associated with aged or damaged

energetic materials that, as a consequence of either long-term storage or exposure to abnormal

thermal environments, may have undergone some degree of decomposition and hence developed

significant porosities with respect to their original pristine state. Although the heat flux at the

surface may not be constant in these applications, the method employed here may be generalized
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to account for a time-varying energy flux (cj. Leiper and Roach, 1993).

The focus of the present study is a comparison of the two-phase-flow effects and ignition-

time results obtained for ignition at a closed surface of a porous energetic material with the

previous results obtained in TMW for ignition at an open surface. In the damaged-propellant

scenario, the open-surface problem corresponds to the ignition energy flux being applied where the

casing has been thoroughly perforated, so that it provides no resistance to gas flow, while for the

present closed-surface problem the casing at the heated surface remains intact. It will be shown,

in particular, that opposite trends are predicted for the correction to the leading-order ignition-

delay time for the two problems, depending on which direction the gas flows relative to the heated

surface. For the open-end problem, the flow of gas out the surface removes energy from the system,

resulting in a corrective delay in the time to ignition, whereas the flow of gas into the solid for the

closed-end problem effectively preheats the material and produces the opposite effect. It will be

reasoned in the latter case that a nonzero convective gas velocity relative to the solid is established

throughout the porous material during a very short initial stage of the ignition process.

2. Mathematical Formulation

Except for the difference in boundary conditions arising from the closed-end nature of the

problem, as illustrated in Figure 1, the mathematical formulation of the problem is the same as in

Part I. In particular, following the onset of external heating at the surface, we seek to determine the

temporal history of the spatially varying solution up to the point of thermal explosion, or runaway,

at some spatial location, signaling the onset of ignition. Based on our previous analysis (TMW)

and that of LW, the following sequence of events is known to occur. Initially, the temperature

is too low for chemical reaction to occur, and thus the first portion of the ignition process is

characterized by an inert stage in which the solid is in a purely conductive state, though influenced

by interphase heat transfer with the gaseous phase, which, because of its thermal expansion, has a

relative motion with respect to the solid. The external heat flux eventually causes the temperature

near the surface to reach a level at which exothermic chemical reactions can start to occur. Termed

the transition stage in LW, this relatively short temporal regime is characterized by a thin surface

region in which there is a reactive-diffusive balance, followed by a somewhat thicker transient-

diffusive region in which solutions match with both the inner solutions in the reactive-diffusive

zone and the inert solution in the far outer region where chemical effects are not yet felt. Thermal

runaway then occurs in the inner region, marking the end of the transition stage and defining the

time to ignition. Since the transition stage occurs on a short time scale relative to the inert stage

of the heating, the leading-order time to ignition is essentially defined as the duration of the latter.

For the small gas-to-solid density

have a perturbative effect on the

ratios considered here, the flow of gas relative to the solid will

leading-order time to ignition, but the associated trend, along
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with other two-phase-flow aspects of the ignition process, will turn out to depend qualitatively on

the direction of the gas flow.

The mathematical model used here and in TMW is based on the two-phase-flow formulation

presented in several recent studies (Margolis and Williams, 1995a,b, 1996). We assume for sim-

plicity a single-step exothermic reaction R(c) 4 P(g) in which the condensed (solid) material is

converted directly to gaseous products, and consider the single-temperature limit of instantaneous

interphase heat-transfer. Constant pressure is also assumed, based on the fact that gas velocities

are small compared with the speed of sound and that even for the closed-end, semi-infinite prob-

lem considered here, gas can pass through the (realistically finite) sample and hence escape from

that part of the physical domain of interest. Consequently, in terms of nondimensional quantities

defined below, and under the assumption of large heat release Q and a small gas-to-solid density

ratio r, the equation of state and the overall continuity and energy equations collapse to

(1)

where the approximation of large heat release allows the neglect of reactant consumption and hence

permits setting the porosity of the solid equal to its initial value as. The various nondimensional

quantities appearing above are defined in terms of their dimensional counterparts (denoted by

tildes) according to

(3)

where ; and < are the time and space variables, and ~ is the temperature. The initial temperature

is denoted by To, ~ is the external heat flux, ~ and ti denote density and velocity, and ~, E and

Q, assumed constant, stand for thermal conductivity, heat capacity (at constant pressure) and

heat release, respectively, where subscripts s and g refer to the solid and gaseous phases, and a

subscript or superscript O denotes evaluation at initial conditions. The kinetic parameters E and

~ are the activation energy and pre-exponential rate constant, respectively, and ~ is the gas

constant. The ratios ?, ~ and ~represent gas-to-solid ratios of density, heat capacity and thermal

conductivity, respect ively, where the initial gas-phase density ~~ is used in the definition of ?, and

the solid density is assumed constant. Finally, since the nondimensional coordinate ~ ranges from

O at the heated surface of the solid to +m, the appropriate initial and boundary conditions needed

to complete the specification of the problem are given by

(4)

7



T((-+ca, t)=z’((, t=o)=l, (5)

Ug((+o, t)=o, (6)

where the closed-end boundary condition (6) replaces the condition u~(~ ~ w, t) = O used in our

previous study of the open-end problem.

As in TMW, we again we seek perturbation solutions of the above problem, based on the fact

that ? <<1, in the form of the expansions

TN Z’(0) +?N+... , Ug%y)+?ug) +... , pgmp$)+?p$) +... , tcwt:o)+?t~)+ . . . ,

(7)

where the last of these corresponds to an expansion for the ignition time tc, which is defined more

precisely below. As before, the primary goal is to describe the effect of gas flow on the time

to ignition. Consequently, the analysis outlined below is developed to the point of calculating

expressions for the leading-order ignition time tc‘0),which depends on porosity and the thermal
(1)conductivityy of each phase, and the first-order correction tC , which contains the first convective

effects of gas flow relative to the solid on the ignition-delay time.

3. Leading-Order Solutions

By expanding the above problem with respect to ? according to the expansions introduced in

Eqs. (7), the leading

determined as

order problem in the inert region (where chemical reaction is negligible) is

(8)

(9)

subject to the leading-order versions of Eqs. (4) – (6). With new space and time variables and the

parameters A’, a and b defined according to

t’=;, <’=:, A’=abA, a-1—a~, b=l–a$+ta~, (lo)

the solution to Eq. (9) can be expressed as

{
(0) _ ~ + 2 ! e-C214t’ – ~’ erfc (~’/2fi) ,T(o) (~’, t’) = Tr –

l-r

pure-conduction result obtained for the open-end problem.

(11)

As before, thiswhich is the same

solution, which is monotonic in time and maximal at the heated surface <’ = O, becomes invalid

for sufficiently large values of time and temperature such that the neglected reaction term in Eq.

(2) becomes significant. Critical values of the temperature Tc (assumed to be a property of the
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solid material and hence not expanded in powers of ?) and tc‘0)are therefore introduced such that

this is true, where the latter is defined to be the leading-order ignition time introduced in the last

of Eqs. (7). Neither are determined precisely at this point, but based on Eq. (11), a relationship

between the two is given by

{

t(o)
Tc=l+2 ~, (12)

or equivalently,

(13)t~) = ~7rab(TC– 1)2.

The determination of t~o),and hence 2“,,,follows from considering the transition stage described

in LW where chemical effects are first felt. Introducing the leading-order departure from the inert

solution (Q(o) = T(o) – T}o) ), the energy equation and associated boundary conditions in the

transition zone become

/j@(o) &ifw) ‘0)–Tc)+o[@(0)2,@(0)(~1— = ~ + ~t #/d{@(0)+(T, ‘0)–Tc) ,(T1(0)–Tc)2]}

at’ > (14)

(a@(o)/ac’)l(c{=o,t,)= 0(0)(< + Co,t’)= Ny(’, t’ =0) =0, (15)

where the small inverse activation-energy parameter c = Z’: /l? << f << 1 and the scaled rate

coefficient ~’ are defined as ~’ = ab~ = abA e–EJTC. Equations (14) – (15) may then be solved

in the limit e + O according to asymptotic matching principles. In particular, stretched time and

space variables are introduced, thereby defining reactiv~diffusive (inner) and transient-diffusive

(outer) zones such that the solution in the latter is matched to both the inner solution and the

inert solution (11 ), which is still valid in the far outer spatial region. The complete analysis for

the nonporous problem was given in LW and reformulated and extended to the porous problem in

TMW. This analysis ultimately yields a transition-stage problem whose solution becomes infinite

at a finite value of a scaled time, which in turn determines an implicit relation for t~o) given by

JEecO ~E/[l+2(t:0)/zab)l/2] .A=
(7rt!0)/ab)li4[l + 2(t~)/md)112]

(16)

Here, Q = –0.431 is the finite value of scaled time that leads to blow-up of the transition-stage

solution described above. It can be seen that this result is identical to Eq. (29) of LW in the

nonporous limit ab = (1 – cr~)(1 – as + ~a~) = 1. Hence, as noted in TMW, the relationship

between the leading-order critical time for the porous problem and the corresponding critical time

in the nonporous limit may be expressed as

(17)

When the ga.i+to-liquid ratio of thermal conductivities obeys the inequality ~ < (2 – a,)/(1 – as),

which is quite realistic since (2 – as )/(1 – as ) >2, it is thus found that, to a first approximation, the
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time to ignition is lessened by the effect of porosity. This is primarily due to the fact that there is

simply less solid per unit volume to heat, although the relative rates of thermal conduction clearly

enter at this order of approximation as well. To see the effect of gas flow into the solid, however, it

‘1) It is anticipated, basedis necessary to calculate the next-order correction to the critical time tc .

on the introductory discussion given above, that this coefficient will provide a negative correction

to the ignition time for the closed-end problem.

4. Solution for the Leading-Order Gas Velocity u~)

The inert solution for the leading-order gas velocity follows from Eqs. (8) with the boundary

condition given by Eq. (6). Hence, in terms of the primed coordinates and parameters introduced
(o) .in Eq. (10), the problem for the leading-order gas velocity Ug N given by

1 (3($ + 8
‘– ~ b’)uf’l ‘oa W

(18)

@)((’ + (), t’) = 0,‘9 (19)

‘0) – l/T(Oj is known from Eq. (11), and we have now dropped the subscript “1” denotingwhere pg —

the solution in the inert regime. Performing an integration with respect to ~’ thus yields

1

1

~’ (5@$)((”, t’)

at’
d~’4% ~’) = – (0) / q o

wg (C, (20)

=a -1 270)( (’,t’) /(’ [2’(0)((”, t’)] ‘2 ~(o)tf”’ “) d(” .
0

In view of the expression for the inert temperature solution T(o) given by Eq. (11), the gas velocity

therefore can be expressed as a function of the scaled temporal and spatial variables in the inert

region as

r

(o) = 1 [( ( )]1

1 + 2 c~-c”w _ (’ erfc X_
~-<”2/@ d~*

‘9 am IT

2W : [’+@-’*2’4’’-~*erf4%J12 ‘
(21)

which differs from the corresponding result for the open-end problem only in the limits of integration

on the integral in Eq. (21).

The profiles of the inert gas velocity for various times are shown in Figures 2a,b for two

different values of the porosity as in terms of the original nondimensional physical variables (~, t).

The profiles demonstrate that the gas velocity is positive (i. e., directed into the porous solid). At

any fixed tirne, the gas velocity achieves it’s largest magnitude far in the sample, while for any

fixed spatial location and time the magnitude of U$) is larger for higher porosities. The latter
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occurs because for higher porosities, the solid is heated more rapidly, resulting in a greater degree

of gas-phase thermal expansion at any given instant of time.

It is also observed that, contrary to the result for the open-end problem, U$) initially achieves

an instantaneous nonzero value, uniform throughout the sample, which then relaxes in time. In-

deed, for small times (t’ << 1), the expression (21) for U$) may be simplified, giving rise to the

approximate result

Clearly, for all <’ >> O(m), we have U$) w a– 1. This is the instantaneous

(22)

value that the gas

velocity is found to reach throughout the sample as soon as heating commences, although since

the gas is initially at rest, there must, in fact, be a period of time during which U$) increases from

zero to a– 1. The absence of such a period stems from the assumption of constant pressure, which

effectively allows a gasdynamic signal to propagate infinitely fast. In reality, a pressure wave would

initially propagate through the gas phase at the local speed of sound such that ahead of the wave

the gas velocity would still be zero, and behind it the above value would be approached as the

wave passed. Reasonable parameter restrictions that justify the neglect of these and certain other

effects, such as Darcy-type flow resistante, are given in the Appendix.

5.

In order to proceed further in

First-Order Corrections T(l)

the analysis, it is necessary to calculate the next-order correction

to the inert temperature, namely the coefficient T(l) in the first

from Eqs. (2), (4) and (5), the problem for T(l) is obtained as

: [(1-%)@)+ $%@] +6$ [W#] =

of Eqs. (7). For this purpose,

[

m(l)

; (1 –as +L.s)= 1
T(l)

+AE(l – a.)—
~–~/@)

T(0)2 7

(23)

~(l)
= o, T@)(@co, t) =T(l)(@=O) =0,

x <=0
(24)

where the reaction term in Eq. (23) is obtained from the expansion of the Arrhenius factor e– ‘lT

with respect to ? when the first of the expansions (7) is substituted for T. We observe that at this

(and higher) orders the boundary conditions (24) are homogeneous.

As in the leading-order analysis, the inert and transition-zone stages are considered, where the

latter is characterized by the same reactivediffusive (inner), transient-diffusive (outer) and inert
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(far outer) spatial zones as before. In the inert regime, Eq. (23) reduces to a nonhomogeneous

heat-conduction equation given by

(25)

subject to the boundary conditions (24). The nonhomogeneous right-hand side of Eq. (25), which

‘0) that are calculated from the result given bywe denote by g(~’, t’),involves first derivatives of U9

Eq. (21). Introducing the appropriate Green’s function for the above problem, namely

G((’, t’lz, o) =
& [

~-(c’–~)2/@-u) + ~–(c’+~)2/4(~’–u)
1

?

the solution of the first-order inert problem can be expressed as

t’ cc

H~w((’, t’) = ~ ~ G((’, t’lz,o) g(z, CT)dzck .

(26)

(27)

This integral has been evaluated numerically to obtain the profiles T(l) as a function of the original

physical variable [ for different porosities at various values of the nondimensional physical time

t, as shown in Figures 3a,b. It is readily seen that the correction Z’(l) to the leading-order inert

temperature is positive, which stems from the fact that gas flows into the porous solid, providing a

preheating effect. Initially, this correction is more significant near the heated surface, and it decays

farther into the sample. As time increases, however, the maximum correction moves deeper into

the material, resulting in a thermal wave propagating into the sample. Thus, unlike the diffusive

heat-transfer process, the convective aspect of heat transfer resulting from the two-phase flow is

not spatially monotonic. Figure 4 demonstrates that 7’(1) increases with porosity for fixed values

of the space and time coordinates.

As with the leading-order solution Z’(o), the inert solution for T(l) also becomes invalid in

the vicinity of the ignition time tc because of the onset of chemical reaction. In particular, the

transition-stage analysis at this order determines that the first-order solution becomes infinite at

the same finite value of the scaled transition time variable as the leading-order solution (c\. TMW).

Consequently, the relationship (16) remains valid, and the correction coefficient t.‘1)to the ignition

time can be calculated based on the two-term expansion for the inert temperature as shown below.

6. Calculation of the Correction to the Ignition-Delay Time t:)

Since the ignition temperature TC has been regarded as a property of the pure material, it

does not depend on ?, and thus the two-term ignition condition at the solid surface is expressed as

Tc = NJ)(O, t:) + m(l)(o, t:) , (28)
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where, from the last of Eqs. (7) and the first of Eqs. (10), t: N t~(”l + H:(l) +.. . . Since t~o) and TC

are determined from Eqs. (12) and (16), Eq. (28) with the above expansion for t: constitutes an

(1) Defining ho(t~) =implicit relationship for tc . T(o) (O,t:) = 1 + 2@, and hl(t~)= T(l)(O, t:),

where the latter is obtained from Eq. (27), and substituting the expansion for t; into Eq. (28), we

obtain
T w ~o(ty) + j%(l) + . .c- o)+ i%, (t:(o) + i%(l)+

[
~ ho(ty) + ? hdty)) + ty)dh@& =t, (.)

cc 1

. . )
(29)

Consequently, the leading-order result T= = ho(t:(o)) is recovered, while at the next order, an

explicit expression for t~(1) is obtained as

~:(l) = _ hl(t:(o)) .

dho/dti I~i=ti (o)

(30)

From the above definitions for ho and hl, the final result becomes

c c~(o)~”e;-)g(x~)’”u
t’ (1) = # (o) (31)

c

The above multiple integral was evaluated numerically to determine the correction coefficient

t!) as a function of porosity. In particular, Eq. (16) was evaluated for each value of porosity to

determine the leading-order ignition time tf), using the physical parameters for HMX from Li et

al. (1990) and Bradley (1970). The corresponding value for tc‘0) was then substituted into Eq.

(31) to provide the final result, which is shown in Figure 5. It is readily seen that the correction

to the ignition time is negative. This result is consistent with the physical expectation that a flow

of gas through the solid, in the same direction as the heat flux, speeds up the ignition process

by providing a convective transport mechanism that supplements the conductive transfer of heat

from the surface into the porous solid. As the porosity increases, the magnitude of t~l) increases

as well. Thus, the ignition time is shortened by an increase in porosity through two effects. First,

at leading order, there is less reactant, so for the same rate of external energy applied to the

surface, a more porous solid will achieve the ignition temperature before a less porous one, as

quantitatively expressed by Eq. (17). At the next order, the positive flow of gas into the solid

provides a convective preheating mechanism that shortens the ignition time even further. This

last result is opposite to that obtained in TMW for the open-end problem, in which case the flow

of gas out of the system and in the opposite direction of the applied energy flux had the effect of

removing energy and thereby delaying the ignition time relative to the leading-order result

7. Conclusion

The present study represents a continuation of the ignition analysis of a porous energetic

material initiated in Part I (Telengat or, Margolis, Williams, 1998). In the present analysis, the
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heated surface of the material was assumed to be closed, resulting in a thermal-expansion-induced

gas flow into the porous solid that provides a preheating effect and shortens the time to ignition

relative to the leading-order result, which depends only on porosity and thermal conductivity. This

result is opposite to that which was obtained for the open-end problem, in which case the flow of

gas is directed out of the solid, thereby removing energy from the system and thus increasing the

ignition-delay time relative to the leading-order expression. Consequently, the correction to the

inert temperature is positive near the closed heated surface, as opposed to the negative temperature

correction obtained for the problem in which the heated surface was open. Another consequence

of the closed-end condition is that the nondimensional gas velocity reaches a finite positive value

(1 – a~)-l throughout the sample within a very short time, since thermally expanded gas in the

vicinity of the surface cannot escape and must therefore flow through the porous solid. In the

constant-pressure limit, this velocity is felt instantaneously far into the sample, although the rate

at which the velocity signal can propagate is physically limited either by the speed of sound or

the viscous resistance experienced by the gas. In both types of problems, the leading-order effect

of porosity is to shorten the ignition-delay time, thus raising safety concerns when an aged or

degraded energetic material develops significant porosity. Since the closed-end condition further

shortens the ignition delay, unlike the open-end condition, the closed end may be considered to

worsen the hazard for a given value of the heat-flux stimulus.

Appendix. Acoustic and Flow-Resistance Effects

Reasonable restrictions on the present problem that justify the neglect of the acoustic and

flow-resistance effects mentioned in the text may be deduced as follows. A characteristic time

scale appropriate for describing the initial period of sound propagation is A~To/ (iio~), where do
--

is the speed of sound in the ambient gas, since according to the length scaling in Eq. (3), the

thickness of the heated layer is of order ~~~o/~. This time must be short compared with the

ignition time, which is of order ~~j~ Z~l!~(1 – as) /~2, where the porosity factor (1 – as), suggested

by the first of Eqs. (10), arises from the fact that a given external heat flux will heat a porous

solid faster than its nonporous counterpart. Consequently, these estimates impose the restriction

tio~,~~~o >> ~/(1 – as). From a different viewpoint, the velocity scaling in Eq. (3) and the first of

Eqs. (10) indicate that the Mach number of the gas is of order ~/[~,E$~oiio(l – a, )], and since this

Mach number must be small for the constant-pressure approximation to apply, the same condition

iio~~~~~o >> ~/(1 – cx$) is obtained. Typical values of ii. are sufficiently large that, unless the

external heat flux ~ is extremely large or the porosity as is very near unity, effects arising from the

propagation of the pressure wave may be neglected.

Finally, a separate requirement for the neglect of pressure gradients in the ignition layer of

interest, applicable to the previous problem (TMW) as well as to the present one, can be derived
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from a Darcy-law restriction on the maximum gas-flow resistance of the porous medium. Thus,

in a porous medium, the pressure drop A@~ across a distante Ai may be empirically expressed

according to Darcy’s law as a~Jgii~Aii/k(a~), where jig is the viscosity of the gas and k(a$ )

is the porosity-dependent permeability of the porous material (typically, the product aj 1ii(a~ )

is a decreasing function of a$, so that a larger pressure drop is required to maintain a given gas

velocity as the porosity decreases; cf. Probstein, 1989). Taking the distance A5 to be the thickness

of the heated layer ~~~o/~ and the velocity ii~ to be the characteristic velocity ~/ [~,~s~o (1 – as )],

the assumption that the relative pressure perturbation A~~/p~ be small leads to the condition

jigi.wg/[(l – a.)a;l R(as )6SbSj@~o] << 1, where, having used the gas-phase equation of state,

W9 is the molecular weight of the gas. Since the kinematic viscosity j.ig/~ is typically small, this

condition is violated only when the permeability of the material is sufficiently small as well.

Since a~lit(as) = ;;, where ?P is a suitable representative transverse pore dimension, the

preceding inequality essentially requires that the product of a gas-phase momentum diffusivity

ji~/p5 and a solid-phase thermal diffusivity is/ (~s~, ) be small compared with the product of 7;

and the square of a representative gas-phase molecular velocity, (fi02?o/ ~g ) lj2. This result is effec-

tively equivalent to equating the pressure-gradient and viscous terms in momentum conservation

and requiring that the resulting pressure change be small compared to the absolute pressure p%.

Additional information, however, is obtained by comparing the transient and inertial terms in that

equation with the viscous term, where the latter is of order ji~ii~/i$. From the estimates given

above, the former two terms are both of order @~ii~/A2 = ~~ii9~2/ [~~~~~~~~(1 – as )], where the lat-

ter equality was obtained by substituting the characteristic ignition time ;I = ~Sj5~5~~~(1 – a~)/~2

for (ii~/Aii) – 1. For the viscous term not to be large compared with the transient and inertial terms,

it is therefore necessary to impose the condition that jig~~~~~~~~(1 – a$ )/ [ajl k(a~)F~~2] ~ 1, or

(E,/F,)[~s/(PsOl : %1@s)i2/[P%T;(l -%)] N ;~fi~, where the last relation is deduced from

the velocity scaling based on Eqs. (3) and (10). This inequality is more restrictive than the preced-

ing one by a factor of the Mach number squared, in that it requires the same product of gas-phase

and solid-phase diffusivities not to exceed the product of i$ with the square of the gas velocity

fig. Combined with the acoustic restriction indicated above, this condition prevents the incident

energy flux from being either too small or too large. In particular,

(32)

which, if a Darcy time ~L)is defined as ~D = ?~j5~/jig, requires the characteristic ignition time ~1

to satisfy

(33);61 : ~~1 << (~1/~A)~~l ,

where ~A = ~S~o/ (iio~) is the acoustic time scale introduced above that characterizes the initial

period of sound propagation. The ignition time is thus restricted to be less than the Darcy time

15



but much greater than the acoustic time. With typical real values of the various parameters, these

restrictions are satisfied and enable ~ to range over at least two orders of magnitude.
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Figure Captions

Figure 1. Physical description of the problem. A constant heat flux is applied to one surface of a

semi-infinite porous energetic solid, leading to thermal runaway (ignition) in finite time.

The heated end is closed to gas flow.

Figure 2. Leading-order gas velocity profile U$) as a function of the spatial coordinate ~, for several

values of time; (a) as = 0.2, ~= 0.9; (b) as = 0.45, ~= 0.9.

Figure 3. Correction coefficient l“(l) in the inert region as a function of ~ for several values of time;

(a) cY~= 0.1, ~= 1.0; (b) as= 0.4, ~= 1.0.

Figure 4. Correction coefficient T(l) in the inert region as a function of porosity as for two different

values of space and time ( ~ = 1.0).

Figure 5. Correction coefficient t$) as a function of the porosity CYS,for two values of the gas-to-

solid thermal conductivity ratio ~ (8 = 1.0, Q = 8.0, E = 77.5 and A = 4.72 x 1016,

where the latter two quantities were calculated from Eq. (1) using the dimensional values

~ = 46,200 cal/mole, TO = 298 “K, ~ = 5 x 1015/see, ~s = 5 x 10–4 cal/cm/sec/°K,

~~ = 1.9 g/cm3, E. = 0.35 cal/g/°K and ~ = 5.0 cal/cm2/see).
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Figure 2. Leading-order gas velocity profile U$) as a function of the spatial coordinate <, for several

values of time; (a, top) cr~= 0.2, f = 0.9; (b, bottom) as = 0.45, ~= 0.9.
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Figure 5. Correction coeflcient t:) as a function of the porosity cY~,for two values of the gas-to-

solid thermal conductivity ratio ~ (&= 1.0, Q = 8.0, E = 77.5 and A = 4.72 x 1016, where the latter

two quantities were calculated from Eq. (1) using the dimensional values E = 46,200 cal/mole,

PO= 298”K, ~ = 5 x 1015/see, ~, = 5 x 10-4 cal/cm/sec~K, ~~ = 1.9 g/cm3, C. = 0.35 cal/gf’K

and ~ = 5.0 cal/cm2\sec).
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